Pólya-Schur master theorems for circular domains and their boundaries
نویسنده
چکیده
We characterize all linear operators on finite or infinite-dimensional polynomial spaces that preserve the property of having the zero set inside a prescribed region Ω ⊆ C for arbitrary closed circular domains Ω (i.e., images of the closed unit disk under a Möbius transformation) and their boundaries. This provides a natural framework for dealing with several long-standing fundamental problems, which we solve in a unified way. In particular, for Ω = R our results settle open questions that go back to Laguerre and Pólya-Schur.
منابع مشابه
Elements of Pólya-schur Theory in Finite Difference Setting
The Pólya-Schur theory describes the class of hyperbolicity preservers, i.e., the linear operators on univariate polynomials preserving realrootedness. We attempt to develop an analog of Pólya-Schur theory in the setting of linear finite difference operators. We study the class of linear finite difference operators preserving the set of real-rooted polynomials whose mesh (i.e., the minimal dist...
متن کاملMultivariate Pólya-schur Classification Problems in the Weyl Algebra
A multivariate polynomial is stable if it is nonvanishing whenever all variables have positive imaginary parts. We classify all linear partial differential operators in the Weyl algebra An that preserve stability. An important tool that we develop in the process is the higher dimensional generalization of Pólya-Schur’s notion of multiplier sequence. We characterize all multivariate multiplier s...
متن کاملElements of Pólya-schur Theory in the Finite Difference Setting
The Pólya-Schur theory describes the class of hyperbolicity preservers, i.e., the class of linear operators acting on univariate polynomials and preserving real-rootedness. We attempt to develop an analog of Pólya-Schur theory in the setting of linear finite difference operators. We study the class of linear finite difference operators preserving the set of real-rooted polynomials whose mesh (i...
متن کاملThe Lee–yang and Pólya–schur Programs. Iii. Zero-preservers on Bargmann–fock Spaces
We characterize linear operators preserving zero-restrictions on entire functions in weighted Bargmann–Fock spaces. This extends the characterization of linear operators on polynomials preserving stability (due to Borcea and the author) to the realm of entire functions, and translates into an optimal, albeit formal, Lee–Yang theorem.
متن کاملCharacterization of finite $p$-groups by the order of their Schur multipliers ($t(G)=7$)
Let $G$ be a finite $p$-group of order $p^n$ and $|{mathcal M}(G)|=p^{frac{1}{2}n(n-1)-t(G)}$, where ${mathcal M}(G)$ is the Schur multiplier of $G$ and $t(G)$ is a nonnegative integer. The classification of such groups $G$ is already known for $t(G)leq 6$. This paper extends the classification to $t(G)=7$.
متن کامل